با چنین سیستم هایی، مجموعه های پروتئینی هترومری تولید می شود. یک مثال قابل توجه از این نوع بیان، بیان همزمان آنتی ژن های S و Lویروس هپاتیت B است.
از دیگر موارد بیان همزمان میتوان به بیان ژن های کد کننده گلیکولات اکسیداز (GO) اسفناج و کاتالاز (CTT1) T ساکارومیسس سرویزیه در هانسونلا پلی مورفا اشاره نمود.
بیان، پردازش، تغییر و تبدیل و یا ترشح مؤثر پروتئینهای نوترکیب خاص در هانسونلا پلی مورفا ممکن است دچار تغییر شود. این محدودیت می تواند با بیان همزمان ژن مورد نظر با یک ژن دوم (یا بیش از یک ژن دیگر) برطرف شود به همراه می آورد. به عنوان مثال فرایند پردازش نادرست اینترفرون آلفا ۲a، می تواند با بیان همزمان ژن KEX2 ساکارومیسس سرویزیه بهبود یابد.
۱-۸ ترشح پروتئین های هترولوگ الیگومری و فعال
هانسونلا پلی مورفا مقدار کمی پروتئین درونی (خودی) ترشح می کند و در نتیجه این ویژگی، پروتئین های هترولوگ ترشح شده به محیط کشت، عموماً خالص هستند. بنابراین استفاده از این میزبان بیانی، روش مناسبی جهت تولید پروتئین های نوترکیب خارجی به فرم محلول می باشد. ترشح پروتئین ها توسط توالیهای نشانه (سیگنال) قابل جداسازی انجام می شود. اگرچه گاهاً مستقل از سیگنال ترشحی، در مواردی ترشح خودبخودی پروتئین هترولوگ نیز مشاهده شده است (Gellissen, 2000).
برای درک توانایی هانسونلا پلی مورفا در تولید و ترشح پروتئین های هترولوگ، سویه هایی از این مخمر به منظور ترشح الکل اکسیداز (AOX) مهندسی گردیدند. الکل اکسیداز، یک پروتئین هومواکتامر کوفاکتوری است که هر زیرواحد آن دارای یک مولکول FAD[12] می باشد (van der Klei et al, 1991). زمانیکه هانسونلا پلی مورفا بر روی محیط حاوی متانول رشد می کند فعالیت پروتئین AOX در ماتریکس پراکسی زومی، جائیکه اکثر پروتئین های اصلی وجود دارند، محدود می شود.
از طرف دیگر، برای فهم چگونگی ترشح الکل اکسیداز، سویه هایی از هانسونلا پلی مورفا مهندسی گردید که ژن اندوژن AOX با ژن AOX به دنبال سیگنال ترشحی در انتهای N، جایگزین شد. به دنبال کشت این سویه در محیط کشت حاوی متانول، حضور AOX فعال شناسایی گردید که این بیان نشان می دهد هانسونلا پلی مورفا قادر به تولید و ترشح کمپلکسهای پروتئینی دارای کوفاکتور و ساختارهای الیگومری می باشد (van der Heide and Veenhuis, Unpublished results).
۱-۹ تولید واکسن نوترکیب
در بسیاری از کشورها واکسن های علیه هپاتیت در اوایل دهه ۱۹۸۰ در دسترس عموم قرار گرفت. این واکسن ها با جداسازی آنتی ژن HBs[13] از سرم افراد ناقل تولید شده بود که اگرچه مؤثر بودند اما به دلیل مشتق شدن از سرم، گران بوده و مدت زمان کوتاهی به سیستم ایمنی عرضه می شوند. به همین دلیل، تولید آنتی ژن HBS هترولوگ در سیستم های بیانی مختلف از جمله مخمر، باکتری، سلولهای گیاهی یا جانوری و نیز حیوانات تراریخته توسعه پیدا نمود. (Billman-Jacobe, 1996, Makrides, 1996).
۱-۱۰ مخمرها به عنوان میکروارگانیسم های تولیدی
سیستم های مخمری دارای مزایایی از جمله توانایی دستکاری ژنتیکی آسان، فرایند های پس از ترجمه یوکاریوتی با میزان بالای تولید محصول و فرآیندهای تخمیری ارزان قیمت هستند. بنابراین تعجب آور نیست که ساکارومیسس سرویزیه به عنوان یکی از میزبانهای مطلوب در تولید پروتئین های هترولوگ شناخته شده است (Hinnen et al, 1995; Barr et al, 2000).
تاکنون دو روش در سیستم بیانی هانسونلا پلی مورفا به منظور تولید زیرواحدهای adw2 و adr از آنتی ژن HBs ابداع شده است که یکی از آنها توسط سازمان بهداشت جهانی (WHO) تأیید شده است (Gregg et al, 1985; Gregg and Madden, 1987).
۱-۱۰ ساخت سویه هانسونلا پلی مورفا بیان کننده آنتی ژن HBs
به طور کلی تولید سویه های هانسونلا پلی مورفا نوترکیب نیازمند دنبال کردن پروتکل استاندارد زیر است:
تولید کاست بیانی و وکتور پلاسمیدی
انتقال وکتور طراحی شده به سلول هانسونلا پلی مورفا
جداسازی سویه های نوترکیب
۱-۱۰-۱ تولید کاست بیانی و وکتور پلاسمیدی
تولید سویه H415 بیان کننده آنتی ژن HBs بوسیله گروهی از محققین یک مثال از این فرایند است. توالی کدکننده آنتی ژن به طول ۶۸۳ نوکلئوتید از پلاسمید pRIT10616 جدا گردید (Harford et al, 1987) و قطعه پروموتریMOX به عنوان سیگنال برای رونویسی از ژن MOX هانسونلا پلی مورفا مشتق شد (Ledeboer et al, 1985; Eckart 1988). این سه عنصر ترکیب شده و قطعه MOX promoter-HBsAg gene-MOX terminator را تشکیل می دهند که اساس کاست بیانی می باشند (Stinchcomb et al, 1980). سپس این کاست دارای عملکرد بیانی درون وکتور پلاسمیدی حاوی عناصر زیر قرار داده شد. ژن مقاومت به کلرامفنیکل به منظور تکثیر در باکتری E. coli، توالی همانند سازی هانسونلا پلی مورفا (HARS1) و ژن URA3 از ساکارومیسس سرویزیه به عنوان مارکر انتخابی[۱۴] در بررسی انتقال پلاسمید به هانسونلا پلی مورفا می باشند.
پلاسمیدهای دارای توالی HARS1 توانایی بالایی برای ادغام در ژنوم میزبان دارند. امروزه سویه هایی شناسایی شده که دارای بیش از ۶۰ کپی از کاست بیانی خارجی اند که این مطلب به دلیل وجود این توالی می باشد.
۱-۱۱ انتقال (ترانسفرم) وکتورهای بیانی به هانسونلا پلی مورفا
۱-۱۱-۱ روش پلی اتیلن گلیکول
پلاسمیدpRBS-269 با بهره گرفتن از روش پلی اتیلن گلایکول به سویه RB10 انتقال یافت و برای مشخص شدن ادغام پلاسمید به درون ژنوم، غربالگری صورت گرفت (Gregg et al, 1985).
تاکنون چندین سویه ترانسفرم شده با کاست های بیانی الحاقی بطور پایدار تولید شده است و سویه H415 یکی از این سویه هاست که برای بیان آنتی ژن HBs تحت شرایط خاص مورد آزمایش قرار گرفته است (Janowicz et al, 1991).
۱-۱۲ جداسازی سویه های نوترکیب
تشخیص بیان پروتئین با رشد سویه های ترنسفورم شده بر روی محیط های تقریباً مغذی حاوی گلوکز، گلیسرول و یا متانول بررسی می شود. در این راستا، مقدار آنتی ژنHBs تولید شده در این سیستم بیانی در مقایسه با مقدار استاندارد آنتی ژن خالص با روش ایمونوبلاتینگ کمی اندازه گیری شد. میزان تولید د ر سویه H415 در محیط کشت حاوی متانول mg100 بود. زمانیکه سلول ها در محیط حاوی گلیسرول قرار گرفتند سنتز آنتی ژن HBs 70% کاهش پیدا کرد و زمانیکه سلول ها به محیط حاوی گلوکز منتقل شدند آنتی ژنی تولید نگردید که این مطلب نشان دهنده تولید این آنتی ژن به طور طبیعی تحت کنترل ژن MOX میباشد (Rutgers et al, 1988).
۱-۱۳ تنظیم متابولیسم متانول
تنظیم آنزیم های احیاکننده[۱۵] به روش مهاری و نه القاء صورت می پذیرد. در طی فرایند رشد، در شرایط کمبود گلوکز این آنزیم ها افزایش پیدا می کنند (Egli, 1980). تجزیه و تحلیل منطقه پروموتر ژن کد کننده AOD نشان داده است که در H. polymorpha بیان ژن MOX نیز توسط یک مکانیسم مهاری تنظیم می شود (Roggenkamp, 1984; Sakai and Tani, 1992).
۱-۱۴ فاکتور محرک رشد کلنی گرانولوسیتی[۱۶] (G-CSF)
در دهه ۶۰ میلادی، دو گروه به طور همزمان روش هایی را برای توسعه و بهبود رشد کلنی های گرانولوسیتی و مونوسیتی مغز استخوان موش و یا سلول های طحال بر روی آگار نیمه جامد مورد بررسی قرار دادند. رشد کلنی این سلولها به حضور فاکتورهایی بستگی دارد که اصطلاحاً آنها را فاکتورهای محرک رشد کلنی(CSF) می نامند. تلاش برای شناخت بیولوژیکی و بیوشیمیایی این محرکها آزمایشگاههای زیادی را تا اواسط دهه ۸۰ میلادی درگیر کرده بود (Metcalf, 2010). این تحقیقات نشان دادند که CSF ها عملکردی اختصاصی و مجزا ندارند بلکه چهار CSF که از نظر بیوشیمیایی کاملاً متفاوت هستند با هم همکاری می کنند. این چهار CSF با توجه به نوع فعالیت شان بر روی کلنی های متفاوت، نامگذاری شدند. به طور مثال GM-CSF که محرک رشد کلنی ماکروفاژها و گرانولوسیت ها می باشد.M-CSF محرک تولید کلنی ماکروفاژها و G-CSF محرک رشد کلنی گرانولوسیتی می باشد.
۱-۱۵ ژن gcsf
این ژن بر روی کروموزوم ۱۷ قرار گرفته و دارای ۴ اینترون است. دو نوع پلی پپتید متفاوت در نتیجه پردازش های مختلف از این ژن ایجاد می شود. تفاوت این دو پلی پپتید در وجود و یا عدم وجود ۳ اسید آمینه می باشد. مطالعات انجام گرفته بر روی بیان این دو نشان می دهد که هر دوی آنها دارای فعالیت های مربوط به GCSF می باشند.
۱-۱۶ پروتئین GCSF
فاکتور محرک رشد کلنی گرانولوسیتی (GCSF)که فاکتور محرک کلنی۳[۱۷] هم نامیده می شود، یک سیتوکین وهورمون محرک رشد و دارای ۱۷۵ اسید آمینه می باشد. گلیکوپروتئین های طبیعی انسانی در دو فرم وجود دارند. ۱۷۴ آمینو اسیدی و ۱۸۰ آمینو اسیدی که پروتئینی طویل با وزن مولکولی ۱۹۶۰۰ دالتون می باشد. فرم ۱۷۴ آمینو اسیدی بیشترین فعالیت را دارد که در محصولات دارویی به کمک تکنولوژی DNA نوترکیب ساخته می شود. این فاکتور در بافت های مختلف اثربخشی خود را از طریق تحریک مغز استخوان برای ساخت گرانولوسیت و سلولهای بنیادی انجام می دهد.GCSF همچنین توسط اندوتلیوم، ماکروفاژها و تعدادی از سلولهای ایمنی تولید می شود.
شکل ۱-۴ ساختار کریستالی از ۳ مولکول G-CSF انسانی
۱-۱۷ عملکرد پروتئین GCSF
G-CSF مغز استخوان را برای انتشار گرانولوسیت و سلولهای بنیادی در خون تحریک می کند. این پروتئین همچنین باعث تحریک بقاء، تکثیر، تمایز و عملکرد پیش سازه های نوتروفیلی و نوتروفیل های بالغ می شود که تنظیم این واکنش ها از طریق Janus kinase (JAK)، مبدل سیگنال و فعال کننده رونویسی STAT، پروتئین کیناز میتوژنی فعال (MAPK) و فسفاتیدیل اینوزیتول-۳-کیناز انجام میشود.
شکل ۱-۵ مکانیسم عملکرد GCSF
گیرنده های GCSF بر روی سلول های پیش ساز مغز استخوان قرار دارند و در پاسخ به GCSF تحریک می شوند و این باعث رشد و تمایز این سلول ها به گرانولوسیت بالغ می شود. این پروتئین همچنین یک القاء کننده قوی برای انتقال سلول های بنیادی خون ساز هماتوپویتیک از مغز استخوان به درون خون می باشد (Wonganu, 2008).
GCSF همچنین محرک تولید گلبولهای سفید خون نیز می باشد و در انکولوژی و هماتولوژی، در بعضی سرطان های خاص برای افزایش سرعت بهبودی افراد نوتروپنی بعد از شیمی درمانی از شکل نوترکیب آن استفاده می شود. شیمی درمانی سبب تولید سطح غیر قابل قبول (کم) سلولهای سفید خون می شود که این مورد بیماران را در مقابل حملات میکروبی و عفونت ها حساس می نماید.
به نظر میرسدGCSF برای یک بارداری امن در طی مرحله لانه گزینی مؤثر باشد که این امر در بارداری های دوم و سوم بیشتر می شود (Strife, 2013).
در کنار تاثیر بر روی سیستم خون سازی، GCSF همچنین می تواند بر روی سلول های عصبی به عنوان مثال فاکتور نوتروفیک تأثیر بگذارد. در واقع گیرنده های این گلیکوپروتئین بر روی نورون های مغز و نخاع ظاهر می شوند (Cooper, 2011).
همچنین از GCSF برای درمان تخریب بافت قلب از طریق تزریق در خون محیطی به همراهSDF stromal) (cell-derived factor استفاده می شود (Anderlini, 2005) .
امروزهGCSF نوترکیب انسانی در سیستم بیانی باکتری E. coli تولید می شود که با نام فیلگراستیم شناخته شده است. فیلگراستیم از لحاظ ساختاری تفاوت کمی با گلیکوپروتئین طبیعی GCSF دارد. فیلگراستیم (Neupogen) و فیلگراستیم پگیله شده (Neulasta) (PEG-filgrastim) دو نوع تجاری متداول فرم نوترکیب GCSF انسانی rhG-CSF هستند. فرم پگیله، نیمه عمر طولانی تری دارد و این موضوع سبب کاهش ضرورت تزریق روزانه این دارو می شود.
شکل دیگر GCSF نوترکیب انسانی در سلولهای تخمدان هامستر چینی (CHO cells) ساخته می شود که با نام لنوگراستیم شناخته می شود. از آنجا که این سیستم بیانی در سلول پستانداران می باشد، لنوگراستیم تولیدی تفاوت بسیار کمی (غیر قابل تشخیص) در ۱۷۴ آمینو اسید با GCSF طبیعی انسان دارد.
برای اولین بار در سال ۱۹۹۹ در آکادمی بیوتکنیک چین، ژنوم انسان به عنوان رشته الگو برای کلونینگ و بیان GCSF در غدد پستانی موش استفاده شد و قطعه ای به طول ۵/۱ کیلوباز با PCR بدست آمد(Lu, 1999).
در سال ۲۰۰۹ محققین به بیان پروتئین نوترکیب GCSF در مخمرPichia Pastoris پرداختند که نتیجه این تلاش بیان این پروتئین تحت پروموتور AOX1 بوده که در نتیجه القاء با متانول میزان پروتئین شده به ۲ میلی گرم در لیتر رسید (Apte-Deshpande, 2009).
در سال ۱۳۸۷ محققین ایرانی به جهش زایی هدفمند در فاکتور محرک رشد کلنی گرانولوسیت انسانی و کلونینگ و بیان آن در باکتری E. coli پرداختند و نتایج آنها نشان داد که پروتئین نوترکیب مورد نظر با موفقیت در سیستم پروکاریوتی کلون و بیان شده است (حامد ناقوسی، ۱۳۸۷).
موضوعات: بدون موضوع
لینک ثابت